2024년도 2학기 상전이와 임계현상 (PHYS663-01) 강의계획서

1. 수업정보

학수번호 PHYS663 분반 01 학점 3.00
이수구분 전공선택 강좌유형 강의실 강좌 선수과목
포스테키안 핵심역량
강의시간 화, 목 / 14:00 ~ 15:15 / 제3공학관 강의실 [109호] 성적취득 구분 G

2. 강의교수 정보

김기석 이름 김기석 학과(전공) 물리학과
이메일 주소 tkfkd@postech.ac.kr Homepage http://phome.postech.ac.kr/user/pheng/index.html
연구실 전화 279-2082
Office Hours 공식적인 오피스 아워 없음. email 보낸 후 약속을 잡고 개별적 방문 토론 장려.

3. 강의목표

Introduction to Conformal Field Theory based on the yellow book, Conformal Field Theory by Philippe Di Francesco, Pierre Mathieu, and David Senechal.

This is the first extensive textbook on conformal field theory, one of the most active areas of research in theoretical physics over the last decade.
Although a number of review articles and lecture notes have been published on the subject, the need for a comprehensive text featuring background material,
in-depth discussion, and exercises has not been satisfied. The authors hope that this work will efficiently fill this gap.
Conformal field theory has found applications in string theory, statistical physics, condensed matter physics, and has been an inspiration for developments
in pure mathematics as well. Consequently, a reasonable text on the subject must be adapted to a wide spectrum of readers, mostly graduate students and researchers
in the above-mentioned areas. Background chapters on quantum field theory, statistical mechanics, Lie algebras and affine Lie algebras have been included to
provide help to those readers unfamiliar with some of these subjects (a knowledge of quantum mechanics is assumed). This textbook may be used profitably in many
graduate courses dealing with special topics of quantum field theory or statistical physics, string theory, and mathematical physics. It may also be an instrument of
choice for self-teaching. At the end of each chapter several exercises have been added, some with hints and/or answers. The reader is encouraged to try many of
them, since passive learning can rapidly become inefficient.
It is impossible to encompass the whole of conformal field theory in a pedagogical manner within a single volume. Therefore, this book is intentionally limited in
scope. It contains some necessary background material, a description of the fundamental formalism of conformal field theory, minimal models, modular invariance,
finite geometries, Wess-Zumino-Witten models, and the coset construction of conformal field theories. Chapter 1 provides a general introduction to the subject and a
more detailed description of the role played by each chapter. In building the list of references listed at the end of this volume, the authors have tried to be as complete
as possible and hope to have given appropriate credit to all.
The authors intend to complete this work with a second volume, that would deal with the following subjects: Superconformal field theory (N = 1,2), parafermionic
models, W -algebras, critical integrable lattice models, perturbed conformal field theories, applications to condensed matter physics, and two-dimensional quantum
gravity.

4. 강의선수/수강필수사항

대학원 고전역학, 대학원 양자역학, & 대학원 통계역학.

5. 성적평가

출석: 40%
숙제: 40%
기말 project: 20%

6. 강의교재

도서명 저자명 출판사 출판년도 ISBN

7. 참고문헌 및 자료

Introduction to Conformal Field Theory based on the yellow book,
Conformal Field Theory by Philippe Di Francesco, Pierre Mathieu, and David Senechal.

8. 강의진도계획

강의 진도 목표는 다음과 같다.
2 Quantum Field Theory
3 Statistical Mechanics
4 Global Conformal Invariance
5 Conformal Invariance in Two Dimensions
6 The Operator Formalism
7 Minimal Models I
8 Minimal Models II
9 The Coulomb-Gas Formalism
10 Modular Invariance
하지만 아마도 ch. 7 정도까지 나갈 수 있을 것 같다.

9. 수업운영

완전 주입식 올드 스타일의 칠판 강의.

10. 학습법 소개 및 기타사항

(1) Most introductory course:
https://www.youtube.com/playlist?list=PLDfPUNusx1Ep5g1jIKXqpNX_t_Zz-kAlQ
(2) Slightly advanced introductory course:
https://www.youtube.com/playlist?list=PL1CFLtxeIrQpys48S8i1LeleiMr_d7Eo3
(3) More advanced introductory course:
https://www.youtube.com/playlist?list=PLFxDQ1_sulk-gBmoI2eNy1YjEJUDqpILa

11. 장애학생에 대한 학습지원 사항

- 수강 관련: 문자 통역(청각), 교과목 보조(발달), 노트필기(전 유형) 등

- 시험 관련: 시험시간 연장(필요시 전 유형), 시험지 확대 복사(시각) 등

- 기타 추가 요청사항 발생 시 장애학생지원센터(279-2434)로 요청