2024년도 2학기 기계학습 (CSED515-01) 강의계획서

1. 수업정보

학수번호 CSED515 분반 01 학점 3.00
이수구분 전공선택 강좌유형 강의실 강좌 선수과목
포스테키안 핵심역량
강의시간 화, 목 / 15:30 ~ 16:45 / 제2공학관 강의실 [102호] 성적취득 구분 G

2. 강의교수 정보

옥정슬 이름 옥정슬 학과(전공) 인공지능대학원
이메일 주소 jungseul@postech.ac.kr Homepage https://sites.google.com/view/jungseulok
연구실 ML-LAB 전화 054-279-2242
Office Hours upon appointment

3. 강의목표

Machine learning is the study of algorithms and statistical methods that computers use to "learn" patterns and inferences in order to perform a specific task without explicit instruction. This course mainly aims at providing mathematical/statistical methods, which are essential in machine learning. A wide range of topics will be covered, including but not limited to density estimation, latent variable models, mixture models, clustering, classification, dimensionality reduction, regression, support vector machines, kernel methods, multi-layer perceptrons, and deep learning.

4. 강의선수/수강필수사항

A basic understanding of probability/statistics and linear algebra
Python programming language

5. 성적평가

Assignments: 40% (five or six assignments)
Midterm exam: 30%
Final exam: 30%

6. 강의교재

도서명 저자명 출판사 출판년도 ISBN
Machine Learning: A Probabilistic Perspective Kevin P. Murphy MIT Press 2012 0262018020
Pattern Recognition and Machine Learning Christopher M. Bishop Springer 2013 8132209060

7. 참고문헌 및 자료

Machine Learning: A Probabilistic Perspective (by K. Murphy, 2012)
Pattern Recognition and Machine Learning (by C. Bishop, 2006, Springer)

8. 강의진도계획

(Tentative schedule: https://docs.google.com/spreadsheets/d/1hyLHHOfrCPbpAXmP0PT6z1V5xQ7DvIHlFsf_4cy3sUg/edit?usp=sharing)
Week 1: Introduction, Review on Probability Theory
Week 2: Density estimation
Week 3: Linear regression
Week 4: Logistic regression
Week 5: SVM
Week 6: SVM & kernel
Week 7: Neural networks
Week 8: Midterm
Week 9: Graphical model
Week 10: Belief propagation
Week 11: Clustering
Week 12: PCA
Week 13: VAE
Week 14: GAN
Week 15: Reinforcement learning
Week 16: Final exam

9. 수업운영

Assignment: every two or three weeks
Exam: midterm and final (closed book)

10. 학습법 소개 및 기타사항

-

11. 장애학생에 대한 학습지원 사항

- 수강 관련: 문자 통역(청각), 교과목 보조(발달), 노트필기(전 유형) 등

- 시험 관련: 시험시간 연장(필요시 전 유형), 시험지 확대 복사(시각) 등

- 기타 추가 요청사항 발생 시 장애학생지원센터(279-2434)로 요청