2025년도 1학기 기계학습을 위한 수학 (CSED343-01) 강의계획서

1. 수업정보

학수번호 CSED343 분반 01 학점 3.00
이수구분 전공필수 강좌유형 강의실 강좌 선수과목
포스테키안 핵심역량
강의시간 월, 수 / 09:30 ~ 10:45 / 제2공학관 강의실 [106호] 성적취득 구분 G

2. 강의교수 정보

김동우 이름 김동우 학과(전공) 인공지능대학원
이메일 주소 dongwookim@postech.ac.kr Homepage https://ml.postech.ac.kr
연구실 ML LAB 전화 054-279-2258
Office Hours

3. 강의목표

Machine learning becomes a popular tool to predict and understand real world datasets. This class aims to provide a basic mathematical/statistical tools required to understand various machine learning algorithms. A wide range of basic mathematical concepts including but not limited to linear algebra, analytic geometry, matrix decomposition, vector calculus, probability and distribution, continuous optimization will be provided.

4. 강의선수/수강필수사항

A basic understanding of probability/statistics is required.
Recommended courses: MATH203, MATH230, IMEN261

5. 성적평가

- midterm exam (30%)
- final exam (30%)
- assignments, quiz, etc (40%)

6. 강의교재

도서명 저자명 출판사 출판년도 ISBN
Mathematics for Machine Learning, Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong, Cambridge University Press 2020 0000

7. 참고문헌 및 자료

CS229: Machine Learning, Stanford University
CSC411: Introduction to Machine Learning, University of Toronto
MIT 6.036: Introduction to Machine Learning

8. 강의진도계획

Week1: Introduction and Motivation
- Week2-3: Linear Algebra
- Week3-4: Analytic Geometry
- Week5-6: Matrix Decompositions
- Week6-7: Vector Calculus
- Week8: Mid-term
- Week9: Probability and Distribution
- Week9-10: Continuous Optimization
- Week11: When Models Meet Data
- Week12: Linear Regression
- Week13: Dimensionality Reduction with Principal Component Analysis
- Week14: Density Estimation with Gaussian Mixture Models
- Week15: Classification with Support Vector Machines
- Week16: Final

9. 수업운영

Offline lectures are provided throughout the semester. 4~5 assignments including programming with mid- and final-exams will be used to evaluate the performance.

10. 학습법 소개 및 기타사항

교과목 이수구분
- 2024학번까지: 전공선택
- 2025학번부터: 전공선택필수

11. 장애학생에 대한 학습지원 사항

- 수강 관련: 문자 통역(청각), 교과목 보조(발달), 노트필기(전 유형) 등

- 시험 관련: 시험시간 연장(필요시 전 유형), 시험지 확대 복사(시각) 등

- 기타 추가 요청사항 발생 시 장애학생지원센터(279-2434)로 요청