2025년도 1학기 기계학습 (AIGS515-01) 강의계획서

1. 수업정보

학수번호 AIGS515 분반 01 학점 3.00
이수구분 전공필수 강좌유형 강의실 강좌 선수과목
포스테키안 핵심역량
강의시간 화, 목 / 11:00 ~ 12:15 / 제2공학관 강의실 [102호] 성적취득 구분 G

2. 강의교수 정보

옥정슬 이름 옥정슬 학과(전공) 인공지능대학원
이메일 주소 jungseul@postech.ac.kr Homepage https://sites.google.com/view/jungseulok
연구실 ML-LAB 전화 054-279-2242
Office Hours upon appointment

3. 강의목표

Machine learning is the study of algorithms and statistical methods that computers use to "learn" patterns and inferences in order to perform a specific task without explicit instruction. This course mainly aims at providing mathematical/statistical methods, which are essential in machine learning. A wide range of topics will be covered, including but not limited to density estimation, latent variable models, mixture models, clustering, classification, dimensionality reduction, regression, support vector machines, kernel methods, multi-layer perceptrons, and deep learning.

4. 강의선수/수강필수사항

Basic understanding of probability, statistics, and linear algebra

5. 성적평가

Assignments: 40% (five or six assignments)
Midterm exam: 30%
Final exam: 30%

(zero tolerance for plagiarism or cheating)

6. 강의교재

도서명 저자명 출판사 출판년도 ISBN
Machine Learning: A Probabilistic Perspective Kevin P. Murphy MIT Press 2012 0262018020
Pattern Recognition and Machine Learning Christopher M. Bishop Springer 2013 8132209060

7. 참고문헌 및 자료

Machine Learning: A Probabilistic Perspective (by K. Murphy, 2012)
Pattern Recognition and Machine Learning (by C. Bishop, 2006, Springer)

(those are publicly available online)

8. 강의진도계획

(Tentative schedule: https://docs.google.com/spreadsheets/d/1hyLHHOfrCPbpAXmP0PT6z1V5xQ7DvIHlFsf_4cy3sUg/edit?usp=sharing)
1-1 2025/2/18 Introduction to Machine Learning
1-2 2025/2/20 Review on Probability Theory
2-1 2025/2/25 Generative Model and Parameter Estimation (1)
2-2 2025/2/27 Generative Model and Parameter Estimation (2)
3-1 2025/3/4 Linear Regression
3-2 2025/3/6 Linear Regression
4-1 2025/3/11 Logistic Regression: Classification
4-2 2025/3/13 Logistic Regression: Classification
5-1 2025/3/18 Support Vector Machine and Constraint Optimization
5-2 2025/3/20 Multi-class Classification
6-1 2025/3/25 Neural Network
6-2 2025/3/27 Neural Network
7-1 2025/4/1 Some Insights on Model Selection
7-2 2025/4/3 Some Insights on Model Selection
8-1 2025/4/8 Midterm Exam (2 hrs, 11:00-13:00)
8-2 2025/4/10 -
9-1 2025/4/15 Graphical Model
9-2 2025/4/17 Belief Propagation (BP)
10-1 2025/4/22 Graph Construction
10-2 2025/4/24 Clustering
11-1 2025/4/29 EM algorithm
11-2 2025/5/1 Principal Components Analysis
12-1 2025/5/6 -
12-2 2025/5/8 Non-linear PCA and Autoencoder
13-1 2025/5/13 VAE (1)
13-2 2025/5/15 VAE (2)
14-1 2025/5/20 GAN
14-2 2025/5/22 MDP and Dynamic Programming
15-1 2025/5/27 RL(1)
15-2 2025/5/29 RL(2)
16-1 2025/6/3 Final Exam (2 hrs, 11:00-13:00)
16-2 2025/6/5 -

9. 수업운영

Assignment: every two or three weeks
Exam: midterm and final (closed book)

10. 학습법 소개 및 기타사항

All lectures, assignments, and exams will be given in English. However, students may use Korean if preferred.

11. 장애학생에 대한 학습지원 사항

- 수강 관련: 문자 통역(청각), 교과목 보조(발달), 노트필기(전 유형) 등

- 시험 관련: 시험시간 연장(필요시 전 유형), 시험지 확대 복사(시각) 등

- 기타 추가 요청사항 발생 시 장애학생지원센터(279-2434)로 요청