2025년도 1학기 수치해석개론 (MATH351-01) 강의계획서

1. 수업정보

학수번호 MATH351 분반 01 학점 3.00
이수구분 전공필수 강좌유형 강의실 강좌 선수과목
포스테키안 핵심역량
강의시간 월, 수 / 09:30 ~ 10:45 / 수리과학관 강의실 [104호] 성적취득 구분 G

2. 강의교수 정보

Gu Jiaxi 이름 Gu Jiaxi 학과(전공) 포스텍 수리 데이터과학 연구소
이메일 주소 jiaxigu@postech.ac.kr Homepage
연구실 전화 054-279-2734
Office Hours MathBldg 214 Wednesday 15:00-17:00; others by appointment

3. 강의목표

Computation has become one of the three legs of science and engineering: Theory, Experiment, and Computation. Scientific computing has been vitally important for studying a wide range of physical, engineering and social phenomenon. In this course we will study the mathematical foundations of well-established numerical algorithms and will cover classical topics in Numerical Analysis: the solution of linear and nonlinear equations, interpolation, numerical differentiation, numerical integration.

The course will focus on the analysis of numerical methods, but also require the students to implement a range of numerical methods using numerical software (Python). If you are not familiar with Jupyter or VScode, please come to the instructor's office for the introduction to Python during the office hours.

4. 강의선수/수강필수사항

Knowledge of undergraduate linear algebra and calculus. Python will be used as the primary language and you will be expected to master it through the course.

You are encouraged to use LaTex editor (overleaf.com) for the homework but not required.

5. 성적평가

36% homework
30% midterm
30% final exam
4% attendance

6. 강의교재

도서명 저자명 출판사 출판년도 ISBN
Numerical Analysis (8/9/10th Edition) Burden and Faires 0000

7. 참고문헌 및 자료

8. 강의진도계획

We will cover the following sections:
1.3 Algorithms and Convergence
2.1 The Bisection Method
2.2 Fixed-Point Iteration
2.3 Newton's Method
2.4 Error Analysis
2.5 Zeros of Polynomials
3.1 The Lagrange Polynomials
3.2 Divided Differences
3.3 Hermite Interpolation
3.4 Cubic Spline
4.1 Numerical Differentiation
4.3 Numerical Integration
4.4 Composite Numerical Integration
4.7 Gaussian Quadrature
5.1 The Elementary Theory of Initial-Value Problems
5.2 Euler's Method
5.3 Higher-Order Taylor Methods
5.4 Runge-Kutta Methods
5.6 Multistep Methods
5.9 Higher-Order Equations and Systems of Differential Equations
5.10 Stability
8.1 Discrete Least Squares Approximation
8.2 Orthogonal Polynomials and Least Squares Approximation
8.3 Chebyshev Polynomials
8.4 Rational Function Approximations

9. 수업운영

No late homework will be accepted without an approved excuse.

10. 학습법 소개 및 기타사항

No late homework will be accepted without an approved excuse.

11. 장애학생에 대한 학습지원 사항

- 수강 관련: 문자 통역(청각), 교과목 보조(발달), 노트필기(전 유형) 등

- 시험 관련: 시험시간 연장(필요시 전 유형), 시험지 확대 복사(시각) 등

- 기타 추가 요청사항 발생 시 장애학생지원센터(279-2434)로 요청