2. 강의교수 정보
|
이름 |
전보광 |
학과(전공) |
수학과 |
이메일 주소 |
leojeon@postech.ac.kr
|
Homepage |
|
연구실 |
|
전화 |
054-279-2046 |
Office Hours |
After each lecture or by appointment // there is TA recitation and office hour on Tue 8pm-9pm.
|
3. 강의목표
The goal is to generalize multivariable calculus into arbitrary dimensions in an abstract setting.
We spend much time to be familiar with fundamental concepts such as differentiable manifolds, maps(immersion, submersion, embedding) between them, tangent bundle, tensor, differential form, integration etc. As Stokes' theorem is a main theorem in multivariable calculus, we will generalize the theorem into differentiable manifolds. If time permits, we cover de Rham theory, where differentiable forms are used to show two manifolds are not differentiably equivalent.
4. 강의선수/수강필수사항
Linear algebra, multivariable calculus (inverse and implicit function theorems, uniqueness and existence results for ODE's, integration of multivariable functions) and general topology.
5. 성적평가
Exams (Midterm (40%), Final (60%)
University policy: more than 25% of absence may result in F.
6. 강의교재
도서명 |
저자명 |
출판사 |
출판년도 |
ISBN |
An Introduction to Manifolds
|
Loring W. Tu
|
Springer
|
2011
|
978-1-4419-7399-3
|
7. 참고문헌 및 자료
A comprehensive introduction to differential geometry Volume 1,
Michael Spivak. 3d ed. -- Berkeley : Publish or Perish, inc. -- 1999
8. 강의진도계획
Chapter 1 Euclidean Spaces
Chapter 2 Manifolds
Chapter 3 The Tangent Space
Midterm Exam
Chapter 4 Lie Groups and Lie Algebras
Chapter 5 Differential Forms
Chapter 6 Integration
Final Exam
10. 학습법 소개 및 기타사항
교제는 도서관 포탈 온라인 이용가능
11. 장애학생에 대한 학습지원 사항
- 수강 관련: 문자 통역(청각), 교과목 보조(발달), 노트필기(전 유형) 등
- 시험 관련: 시험시간 연장(필요시 전 유형), 시험지 확대 복사(시각) 등
- 기타 추가 요청사항 발생 시 장애학생지원센터(279-2434)로 요청