2025년도 1학기 대수군이론 (MATH605-01) 강의계획서

1. 수업정보

학수번호 MATH605 분반 01 학점 3.00
이수구분 전공선택 강좌유형 강의실 강좌 선수과목
포스테키안 핵심역량
강의시간 월, 수 / 11:00 ~ 12:15 / 수리과학관 [100호] 성적취득 구분 G

2. 강의교수 정보

조성문 이름 조성문 학과(전공) 수학과
이메일 주소 sungmuncho@postech.ac.kr Homepage
연구실 전화 054-279-2045
Office Hours

3. 강의목표

Brian Conrad said, 'Algebraic group is a very interesting mixture of group theory and algebraic geometry. Over finite fields it explains virtually all finite simple groups, over number fields it illuminates many important problems concerning quadratic forms and modular forms and beyond, over the real numbers it clarifies the theory of Lie groups and so on'.

In this course, we will study basic knowledge of algebraic groups. Our ultimate goal is to understand the structure and the classification of reductive groups and semisimple algebraic groups.

4. 강의선수/수강필수사항

Basic background of algebraic geometry is recommended.

5. 성적평가

Attendance and Homework. You will get F if you miss more than 5 classes.

6. 강의교재

도서명 저자명 출판사 출판년도 ISBN

7. 참고문헌 및 자료

1. J. Milne gave a course about the topic. The lecture note was available on his webpage but currently was merged into several other lecture notes (total pages are around 1,000) given at http://jmilne.org/math/CourseNotes/ala.html.
I will post his initial lecture note written in 2005 at LMS.

2. Brian Conrad gave a course about the topic. His lecture note as well as syllabus are available at
http://virtualmath1.stanford.edu/~conrad/252Page/
and
http://virtualmath1.stanford.edu/~conrad/249BW16Page/

3. Jiu-Kang Yu gave a course about the topic. I will follow some of his note (which is not available on the internet).

4. Springer's Linear Algebraic Groups. This book includes almost necessary theorems about the topic.

More references will be updated during the lecture (and LMS) if necessary.

8. 강의진도계획

9. 수업운영

10. 학습법 소개 및 기타사항

11. 장애학생에 대한 학습지원 사항

- 수강 관련: 문자 통역(청각), 교과목 보조(발달), 노트필기(전 유형) 등

- 시험 관련: 시험시간 연장(필요시 전 유형), 시험지 확대 복사(시각) 등

- 기타 추가 요청사항 발생 시 장애학생지원센터(279-2434)로 요청