2025년도 1학기 경영통계:기초와 철강산업 응용 (MSIP503-01) 강의계획서

1. 수업정보

학수번호 MSIP503 분반 01 학점 3.00
이수구분 전공필수 강좌유형 선수과목
포스테키안 핵심역량
강의시간 목 / 11:00 ~ 13:45 / 온라인 강의실 [003호] 성적취득 구분 G

2. 강의교수 정보

이혜선 이름 이혜선 학과(전공) 산업경영공학과
이메일 주소 hyelee@postech.ac.kr Homepage
연구실 전화 054-279-8222
Office Hours

3. 강의목표

Data science integrates statistical knowledge, computing skill, data-related technique, and communication skills. This course introduces the foundational concepts of statistics and their applications in the business domain. Students will learn to collect, analyze, interpret, and present data within a business context. By mastering descriptive statistics, probability, and hypothesis testing, students will develop the ability to analyze data based on its type and select the most appropriate statistical methods for each subject matter.

● Understand and apply basic statistical technique
● Analyze and interpret data using descriptive and inferential statistics
● Utilize statistical software to conduct data analysis
● Present statistical insights effectively in the business or industry sector

4. 강의선수/수강필수사항

No Prerequisite

5. 성적평가

Attendance 5% (0.1 off per absence)
Homework (Quiz) 25%
Midterm exam 30%
Final exam 30%
Short term report 10% (at the end of semester)

6. 강의교재

도서명 저자명 출판사 출판년도 ISBN
Eseentials of Statistics for Business and Economics, 10/E (Asia Edition) Jeffrey D. Camm, James J. Cochran, Michael J. Fry, Jeffrey W. Ohlmann, David R. Anderson Phd, Dennis J. Sweeney, Thomas A. Williams Cengage Learning 2023 978-981-5119-35-0

7. 참고문헌 및 자료

Statistics for Management and Economics. Keller, G. (2022). Cengage Learning

8. 강의진도계획

1 Data and Statistics (Chap1)
2 Descriptive Statistics (Chap2) - Data Visualization : Tabular and Graphical display
3 Descriptive Statistics (Chap3) -Numerical Measures : Location measures, Variability, Boxplots, Correlation.
4 Introduction to Probability (Chap4)- Random experiment, Basic probability, Conditional probability
5 Discrete & Continuous Prob. Distribution (Chap5, Chap6)- Binomial, Uniform, Normal Prob. Dist.
7 Sampling Distribution (Chap7) - Central limit theorem, Sampling error
6 Interval Estimation (Chap8) - Confidence Interval, Sample size, Margin of error
8 Midterm Exam
9 Hypothesis Testing (Chap9 & 10) - Two samples (Mean, Proportion)
10 Chi-Square test (Chap12)- Chi-Square Test for Independence
11 ANOVA (Chap13) - Analysis of Variance
12 Simple Regression (Chap14) - Regression, Assumption
13 Multiple Regression (Chap15) - Multicollinearity, Variable selection
14 Data Analytics - Data exploration, Prediction model
15 Multiple Regression (Chap15) - Optimal prediction model
16 Final Exam

9. 수업운영

* Homework : biweekly, Quiz in occasion
* Data analytical tool : ECMiner tool (Menu-driven software, no coding) will be given. ECMiner tool functions similarly to the SAS OnDemand interface,
* Real data in public and private sector. Utilize various types of data.

HW : late submission 10% off within 24 hrs, 20% off after 24hrs
Short term report : Report of 10+_page(ppt) for data analysis (data will be given) at the end of semester

If you are unable to attend the class, you must complete the recorded video by Sunday for the corresponding week for attendance to be recognized.

10. 학습법 소개 및 기타사항

Data analysis practice using analytical software tool

11. 장애학생에 대한 학습지원 사항

- 수강 관련: 문자 통역(청각), 교과목 보조(발달), 노트필기(전 유형) 등

- 시험 관련: 시험시간 연장(필요시 전 유형), 시험지 확대 복사(시각) 등

- 기타 추가 요청사항 발생 시 장애학생지원센터(279-2434)로 요청