2025년도 1학기 제조지능 (IDSC723-01) 강의계획서

1. 수업정보

학수번호 IDSC723 분반 01 학점 3.00
이수구분 전공선택 강좌유형 강의실 강좌 선수과목
포스테키안 핵심역량
강의시간 월, 수 / 15:30 ~ 16:45 / 제4공학관 강의실 [405호] 성적취득 구분 G

2. 강의교수 정보

김덕영 이름 김덕영 학과(전공) 산업경영공학과
이메일 주소 skyward@postech.ac.kr Homepage http://factory.postech.ac.kr
연구실 FACTORY INTELLIGENCE LAB 전화 054-279-2209
Office Hours

3. 강의목표

To understand the key mathematical techniques in machine intelligence and learn their applicability to practical manufacturing problems. Topics covered in the course include: Best Approximation, Linear & Logistic Regression, Matrix Decomposition, Diagonalization & Similarity, Fourier Transformation, Laplace Transformation, Dimensionality Reduction with PCA and SVD, Classification with Support Vector Machine, Gradient Descent Optimization, Taylor Approximation, and Neural Networks

4. 강의선수/수강필수사항

Linear Algebra, Calculus, Programming Skills

5. 성적평가

Midterm project 15%
Final project 15%
Midterm exam 35%
Final exam 35%

6. 강의교재

도서명 저자명 출판사 출판년도 ISBN
Mathematics for Machine Learning Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong Cambridge University Press 2020 110845514X

7. 참고문헌 및 자료

• Howard Anton and Chris Rorres, Elementary Linear Algebra, 10th ed., John Wiley & Sons, 2011
• Alan Oppenheim and Alan Willsky, Signals & Systems, 2nd ed., Prentice Hall: New Jersey, 1997
• Douglas C. Montgomery and George C. Runger, Applied statistics and Probability for Engineers, 5th ed., John Wiley & Sons, 2011

8. 강의진도계획

1 Approximation (general vector space, projection, orthogonality)
2 Approximation (linear regression)
3 Eigen Decomposition (spectral decomposition)
4 Principal Component Analysis (diagonalization & similarity)
5 Principal Component Analysis (dimension reduction)
6 Singular Value Decomposition
7 Fourier Transformation
8 Midterm
9 Laplace Transformation
10 Constrained Optimization (constraints and Lagrange multipliers)
11 Support Vector Machine
12 Gradient Descent Optimization (partial derivatives, chain rule, Hessians and second-order derivatives)
13 Logistic Regression, Neural Networks and Backpropagation
14 Activation Functions, Loss Functions
15 Talyor Approximation & Applications
16 Final Exam

9. 수업운영

Flipped Learning, Lectures, Programming projects

10. 학습법 소개 및 기타사항

11. 장애학생에 대한 학습지원 사항

- 수강 관련: 문자 통역(청각), 교과목 보조(발달), 노트필기(전 유형) 등

- 시험 관련: 시험시간 연장(필요시 전 유형), 시험지 확대 복사(시각) 등

- 기타 추가 요청사항 발생 시 장애학생지원센터(279-2434)로 요청