3. 강의목표
This is an introductory course on deep learning. This course is designed for any graduate-level students with some background in Calculus, Linear Algebra and Probability. The topics include, but not limited to, machine learning, deep neural network, regularization, optimization, graph learning and generative models. The students who successfully finish this course will gain knowledge on representation learning via deep learning.
4. 강의선수/수강필수사항
Calculus, Linear Algebra, Probability
5. 성적평가
Quiz: 30%
Assignments: 15%
Final Project: 50%
Class participation: 5%
*The criteria above is subject to change.
6. 강의교재
도서명 |
저자명 |
출판사 |
출판년도 |
ISBN |
Deep Learning
|
Ian Goodfellow
|
The MIT Press
|
2016
|
9780262035613
|
7. 참고문헌 및 자료
https://udlbook.github.io/udlbook/
8. 강의진도계획
Chapter 1 - Introduction
Chapter 2 - Supervised learning
Chapter 3 - Shallow neural networks
Chapter 4 - Deep neural networks
Chapter 5 - Loss functions
Chapter 6 - Training models
Chapter 7 - Gradients and initialization
Chapter 8 - Measuring performance
Chapter 9 - Regularization
Chapter 10 - Convolutional networks
Chapter 11 - Residual networks
Chapter 12 - Transformers
Chapter 13 - Graph neural networks
Chapter 14 - Unsupervised learning
Chapter 15 - Generative adversarial networks
Chapter 16 - Normalizing flows
Chapter 17 - Variational autoencoders
Chapter 18 - Diffusion models
Chapter 19 - Deep reinforcement learning
Chapter 20 - Why does deep learning work?
Chapter 21 - Deep learning and ethics
*The course schedule is subject to change.
9. 수업운영
The course will be taught offline, face-to-face.
11. 장애학생에 대한 학습지원 사항
- 수강 관련: 문자 통역(청각), 교과목 보조(발달), 노트필기(전 유형) 등
- 시험 관련: 시험시간 연장(필요시 전 유형), 시험지 확대 복사(시각) 등
- 기타 추가 요청사항 발생 시 장애학생지원센터(279-2434)로 요청