2025년도 1학기 환경 빅데이터 개론 (PSDS593-01) 강의계획서

1. 수업정보

학수번호 PSDS593 분반 01 학점 3.00
이수구분 전공선택 강좌유형 강의실 강좌 선수과목
포스테키안 핵심역량
강의시간 화, 목 / 09:30 ~ 10:45 / 지곡연구동 310호 성적취득 구분 G

2. 강의교수 정보

감종훈 이름 감종훈 학과(전공) 환경공학부
이메일 주소 jhkam@postech.ac.kr Homepage https://hydroclimatology.postech.ac.kr/
연구실 수문기후연구실 전화 054-279-2318
Office Hours T 9:30-11:30 am

3. 강의목표

Course Description:
The interdisciplinary introduction to environmental big data. Focus is placed upon modeling and analyzing big data in built-in environments.

Course Objectives:
The objectives of the course are (1) to introduce basic knowledge of environmental big data for environmental science and engineering, (2) to provide a learning experience of artificial intelligence techniques to analyze environmental big data, and (3) to establish the analysis and modeling skill for environmental issues in natural-human coupled system.

4. 강의선수/수강필수사항

i) Programming and Problem Solutions (CSED101)
ii) or Permission of Instructor is Required.

5. 성적평가

Classroom Participation: 10%
In-class Quiz/Assignment: 20%
Term Project Presentation I: 10%
Term Project Presentation II: 15%
Final Project Presentation: 20%
Final Project Report: 25%
Total: 100%

6. 강의교재

도서명 저자명 출판사 출판년도 ISBN

7. 참고문헌 및 자료

Wilks, D.S., 2011. Statistical methods in the atmospheric sciences (Vol. 100). Academic press.

Other references will be provided in class.

8. 강의진도계획

Week 1: Introduction to Environmental Big Data
Week 2: Introduction to Python Jupyter Notebook (I)
Week 3: Introduction to Pyhton Jupyter Notebook (II)
Week 4: Data Visualization in Python Jupyter Notebook
Week 5: Term Project Presentation (I)
Week 6: Deep Learning (I)
Week 7: Deep Learning (II)
Week 8: Machine Learning (I)
Week 9: Machine Learning (II)
Week 10: Term Project Presentation (II)
Week 11: Intro. to Data Mining: Open-API
Week 12: Intro. to Data Mining: Crawling
Week 13: Intro. to Python for Sentiment Analysis
Week 14: Sentiment Analysis: Climatic Extremes
Week 15: Final Term Project Presentation

9. 수업운영

-In-personal and Offline Lecture Schedule Type
-Face-to-Face Instructional Method

10. 학습법 소개 및 기타사항

11. 장애학생에 대한 학습지원 사항

- 수강 관련: 문자 통역(청각), 교과목 보조(발달), 노트필기(전 유형) 등

- 시험 관련: 시험시간 연장(필요시 전 유형), 시험지 확대 복사(시각) 등

- 기타 추가 요청사항 발생 시 장애학생지원센터(279-2434)로 요청