2025년도 2학기 화공 프로그래밍 및 AI (CHEB301-01) 강의계획서

1. 수업정보

학수번호 CHEB301 분반 01 학점 3.00
이수구분 전공필수 강좌유형 강의실 강좌 선수과목
포스테키안 핵심역량
강의시간 화, 목 / 15:30 ~ 16:45 / 환경공학동 강의실 [112호] 성적취득 구분 G

2. 강의교수 정보

이상민 이름 이상민 학과(전공) 화학공학과
이메일 주소 sminlee@postech.ac.kr Homepage https://pdl.postech.ac.kr/
연구실 054-279-2277 전화 054-279-2277
Office Hours

3. 강의목표

This course introduces the fundamental theories of numerical analysis, data analysis, and artificial intelligence, which are actively used in various fields of chemical engineering. It also aims to develop the ability to directly program related software using Python and to understand how these techniques are applied in major areas of chemical engineering.

The course is structured into four main parts:
(1) Introduction to Python: A basic introduction to the Python language and an overview of Python libraries widely used in mathematics, science, and engineering.
(2) Numerical Computing: An introduction to numerical analysis methods commonly used in chemical engineering and AI, with hands-on programming of numerical tools using Python.
(3) AI Algorithm Basics: A presentation of fundamental theories related to artificial intelligence, along with simple AI model programming using PyTorch.
(4) Applications of AI in Chemical Engineering: A review of specific examples of how artificial intelligence is being applied in the field of chemical engineering.

4. 강의선수/수강필수사항

Not mandatory, but recommended to take CSED105 and CSED101

5. 성적평가

Attendance: 20% (수업일수 1/4 이상 결석시 자동으로 F)
Assignments: 40%
Final exam: 40%

6. 강의교재

도서명 저자명 출판사 출판년도 ISBN
PPT slides will be provided before classes. 0000

7. 참고문헌 및 자료

“Deep learning”, Ian Goodfellow
“Computational Physics”, Mark Newman
"Mathmatics for machine learning", Marc Peter Deisenroth
"Introduction to linear algebra", Gilbert Strang

8. 강의진도계획

Part 1. Introduction to Python
- Programming basics I
- Programming basics II

Part 2. Computer programming for science and engineering
- Computational analysis and visualization methods
- Numerical computing
- Linear Algebra
- Optimization and Linear Regression

Part 3: AI algorithm basics
- Classification and Clustering
- Activation function
- Back propagation
- Deep learning and CNN / Attention & Transformer
- Programming Deep-NN with PyTorch

Part 4: Applications of AI
- Applications in material science
- Applications in bio engineering
- Applications in process systems engineering

9. 수업운영

- 대면강의 기본
- 상황에 따라 비대면 및 녹화강의로 대체

10. 학습법 소개 및 기타사항

없음

11. 장애학생에 대한 학습지원 사항

- 수강 관련: 문자 통역(청각), 교과목 보조(발달), 노트필기(전 유형) 등

- 시험 관련: 시험시간 연장(필요시 전 유형), 시험지 확대 복사(시각) 등

- 기타 추가 요청사항 발생 시 장애학생지원센터(279-2434)로 요청