2025년도 2학기 편미분방정식 (MATH517-01) 강의계획서

1. 수업정보

학수번호 MATH517 분반 01 학점 3.00
이수구분 전공선택 강좌유형 강의실 강좌 선수과목
포스테키안 핵심역량
강의시간 월, 수 / 09:30 ~ 10:45 / 수리과학관 강의실 [206호] 성적취득 구분 G

2. 강의교수 정보

황형주 이름 황형주 학과(전공) 수학과
이메일 주소 hjhwang@postech.ac.kr Homepage http://hjhwang.postech.ac.kr
연구실 279-3056 전화 279-2056
Office Hours By appointment

3. 강의목표

With a simple physical motivation, we will learn several fundamental linear equations that form the basis of partial differential equations (PDEs). After studying the characteristic method for ordinary differential equations (ODEs) and conservation laws, the latter part of the lecture will cover key aspects of modern PDE theory, such as Sobolev spaces, traces, Sobolev embedding theorems, compactness results, and more. These concepts will then be applied to study the existence, uniqueness, and regularity estimates of solutions to linear evolution equations.

4. 강의선수/수강필수사항

- Basic undergraduate courses related to analysis
- Graduate-level real analysis (including measure theory)
- It's even better if you have studied functional analysis, but not required

5. 성적평가

Midterm exam 50%, final exam 50%

6. 강의교재

도서명 저자명 출판사 출판년도 ISBN
Partial Differential Equations, 2nd Ed L. C. Evans AMS 2015
Introduction to Partial Differential Equations G. B. Folland Princeton University Press 1995

7. 참고문헌 및 자료

1.J. Smoller, Shock Waves and Reaction Diffusion Equations, Springer (1994)
2. G. B. Whitham, Linear and Nonlinear Waves,Wiley and Sons (1974).
3. G. I. Barenblatt. Scaling, self-similarity and intermediate asymptotics. Cambridge
University Press, Cambridge, 2 edition, 1996.

8. 강의진도계획

I. Nonlinear first order partial differential equations
1.1. Characteristics
1.2. Hamilton-Jacobi equations (Weak solutions)
1.3. Conservation laws
1.4. system of conservation laws

II. Some ways to represent solutions in closed forms
2.1. Self similarity in boundary value problems
2.2. Self-similarity of second kind

III. Reaction-diffusion systems
3.1. Local existence of solutions
3.2. Invariant regions (Turing instability and regularity for parabolic equations

9. 수업운영

In-person lectures.

Lectures will be uploaded online during business trips.

10. 학습법 소개 및 기타사항

11. 장애학생에 대한 학습지원 사항

- 수강 관련: 문자 통역(청각), 교과목 보조(발달), 노트필기(전 유형) 등

- 시험 관련: 시험시간 연장(필요시 전 유형), 시험지 확대 복사(시각) 등

- 기타 추가 요청사항 발생 시 장애학생지원센터(279-2434)로 요청