3. 강의목표
Machine learning is the study of algorithms and statistical methods that computers use to "learn" patterns and inferences in order to perform a specific task without explicit instruction. This course mainly aims at providing mathematical/statistical methods, which are essential in machine learning. A wide range of topics will be covered, including but not limited to density estimation, latent variable models, mixture models, clustering, classification, dimensionality reduction, regression, support vector machines, kernel methods, multi-layer perceptrons, and deep learning.
4. 강의선수/수강필수사항
A basic understanding of probability/statistics and linear algebra
Python programming language
5. 성적평가
Assignments: 45%
Midterm exam1: 15%
Midterm exam2: 15%
Final exam: 15%
Class Participation: 10%
6. 강의교재
도서명 |
저자명 |
출판사 |
출판년도 |
ISBN |
Machine Learning: A Probabilistic Perspective
|
Kevin P. Murphy
|
MIT Press
|
2012
|
0262018020
|
Pattern Recognition and Machine Learning
|
Christopher M. Bishop
|
Springer
|
2013
|
8132209060
|
7. 참고문헌 및 자료
Machine Learning: A Probabilistic Perspective (by K. Murphy, 2012)
Pattern Recognition and Machine Learning (by C. Bishop, Springer, 2006)
Deep Learning (C. Bishop and H. Bishop, Springer, 2024)
Reinforcement Learning (by R. Sutton and A. Barto, MIT Press, 2020)
8. 강의진도계획
Tentative schedule: https://docs.google.com/spreadsheets/d/e/2PACX-1vRd2A8bm0avoKXjcekoCtg7jxSTh-tk06fMr0_GcsDDKYLHdYKkp8S_YkyZYuKYgJbq_KQx-oe-I5KR/pubhtml?gid=0&single=true
9. 수업운영
Assignment: about four assignments
Exam: midterms and final (closed book)
11. 장애학생에 대한 학습지원 사항
- 수강 관련: 문자 통역(청각), 교과목 보조(발달), 노트필기(전 유형) 등
- 시험 관련: 시험시간 연장(필요시 전 유형), 시험지 확대 복사(시각) 등
- 기타 추가 요청사항 발생 시 장애학생지원센터(279-2434)로 요청