2025-Fall Semiconductor Transport Theory (EECE592-01) The course syllabus

1.Course Information

Course No. EECE592 Section 01 Credit 3.00
Category Major elective Course Type prerequisites
Postechian Core Competence
Hours MON, WED / 12:30 ~ 13:45 / Elec Bldg[104]Lecture Room Grading Scale G

2. Instructor Information

Kong Byoung-Don Name Kong Byoung-Don Department Dept. of Electrical Eng.
Email address bdkong@postech.ac.kr Homepage
Office Office Phone 054-279-2370
Office Hours

3. Course Objectives

This course introduces the physics of semiconductors for graduate students with an emphasis on industrial relevance and practical integration. In the early weeks, students will review foundational concepts in quantum mechanics, statistical mechanics, and solid-state physics to establish the background needed for advanced applications. The course then covers band-structure calculations using semi-empirical methods such as tight-binding and the k·p method, connecting these approaches to device modeling and engineering practice. Real and calculated band structures are analyzed to extract effective mass, density of states, and related physical parameters directly relevant to semiconductor device design. Building on this, advanced topics such as electrical and thermal transport phenomena, scattering processes, localized states, and equilibrium/non-equilibrium semiconductor statistics are explored. To reinforce industry-academia integration, students are introduced to case studies, simulation frameworks, and analysis methodologies commonly employed in semiconductor R&D. By the end of the course, students will have both the theoretical background and practical insight required for contributing to convergent semiconductor technologies in research and industrial settings.
(이 강의는 대학원생을 대상으로 반도체 물리학의 핵심을 산업 연계성과 실무 적용을 강조하여 소개하는 교과목입니다. 초반에는 양자역학, 통계역학, 고체물리학의 기초 내용을 복습하여 고급 응용을 위한 배경지식을 다집니다. 이어서 tight-binding, k·p 방법 등 준경험적 기법을 활용한 밴드구조 계산을 다루며, 이를 소자 모델링 및 공학적 설계와 연계합니다. 실제 및 계산된 밴드구조를 분석하여 유효질량, 상태밀도 등 반도체 소자 설계와 직결되는 물리적 매개변수를 이해합니다. 이후에는 전기 및 열 수송 현상, 산란 과정, 국소화 상태, 평형 및 비평형 반도체 통계 등 고급 주제를 학습합니다. 아울러 산업-학계 연계 강화를 위해 반도체 연구개발 현장에서 활용되는 사례 연구, 시뮬레이션 프레임워크, 분석 방법론 등을 소개합니다. 본 교과목을 통해 학생들은 이론적 지식뿐 아니라 반도체 기술 융합 및 실무적 연구개발에 기여할 수 있는 통찰을 함께 습득하게 됩니다.)

4. Prerequisites & require

5. Grading

Midterm: 30%
Final: 40%
Homework: 30% (3 times. 10% each)

6. Course Materials

Title Author Publisher Publication
Year/Edition
ISBN

7. Course References

Textbook: Fundamentals of Semiconductors by Peter Y. Yu and Manuel Cardona 4th Ed.
(E-book is available at the library website.)

1. Electronic Properties of Crystalline Solids – Richard H. Bube
2. Physical Properties of Semiconductors- Charles M. Wolfe, Nick Holonyak, Jr. and Gregory E. Stillman
3. Electrical Transport in Nanoscale Systems – Massimiliano Di Ventra

8. Course Plan

Week 1–2: Foundational Review for Semiconductor Applications – Quantum Mechanics, Statistical Mechanics, and Crystal Structures
Week 3: Electronic Band Structure for Device Engineering – Free Electron and Tight-Binding Models
Week 4: Practical Band-Structure Modeling – Pseudopotential and k·p Methods with Simulation Tools
Week 5: Vibrational Properties and Thermal Reliability of Semiconductors
Week 6: Classical Electron Transport – From Theory to Conductivity in Devices
Week 7: Boltzmann Transport Equation – Practical Framework for Semiconductor Engineering
Week 8: Mid-term & Review
Week 9–10: Scattering Mechanisms and Mobility Engineering for Industrial Applications
Week 11: Optical Properties of Semiconductors – Applications in Photonics and Optoelectronics
Week 12–13: Landauer Approach and Nano-device Analysis in Practice
Week 14: Non-equilibrium Green’s Function (NEGF) Approach – Practical Simulation for Device Design
Week 15: Emerging Materials for Industry Convergence – 2D Semiconductors and Quantum Devices
Week 16: Final Exam

1–2주차: 반도체 응용을 위한 기초 복습 – 양자역학, 통계역학, 결정구조
3주차: 소자 공학을 위한 전자 밴드구조 – 자유전자 모형과 Tight-Binding 모형
4주차: 실무형 밴드구조 해석 – 유효퍼텐셜 기법과 k·p 방법, 시뮬레이션 활용
5주차: 반도체의 진동 특성과 열적 신뢰성
6주차: 고전적 전자 수송 – 이론에서 소자 전도 특성까지
7주차: 볼츠만 수송 방정식 – 반도체 공학 실무 적용
8주차: 중간고사 및 복습
9–10주차: 산란 메커니즘과 이동도 제어 – 산업 응용 사례 중심
11주차: 반도체의 광학적 성질 – 포토닉스 및 광전자 소자 응용
12–13주차: Landauer 접근법의 이해 및 나노소자 해석 실무
14주차: 비평형 그린 함수(NEGF) 접근법 – 소자 설계 시뮬레이션 실무 적용
15주차: 산업 융합을 위한 차세대 신소재 – 2D 반도체 및 양자 소자
16주차: 기말고사

9. Course Operation

Mainly lecture with slides. In class Q/A and discussion.

10. How to Teach & Remark

11. Supports for Students with a Disability

- Taking Course: interpreting services (for hearing impairment), Mobility and preferential seating assistances (for developmental disability), Note taking(for all kinds of disabilities) and etc.

- Taking Exam: Extended exam period (for all kinds of disabilities, if needed), Magnified exam papers (for sight disability), and etc.

- Please contact Center for Students with Disabilities (279-2434) for additional assistance