2025년도 2학기 특론: 딥러닝 이론 (EECE695D-01) 강의계획서

1. 수업정보

학수번호 EECE695D 분반 01 학점 3.00
이수구분 전공선택 강좌유형 선수과목
포스테키안 핵심역량
강의시간 월, 수 / 14:00 ~ 15:15 / 제2공학관 강의실 [109호] 성적취득 구분 G

2. 강의교수 정보

이재호 이름 이재호 학과(전공) 전자전기공학과
이메일 주소 jaehoklee@postech.ac.kr Homepage https://jaeho-lee.github.io
연구실 EFFICIENT LEARNING LABORATORY 전화
Office Hours TBD

3. 강의목표

This course aims to provide you a theoretical framework to understand deep learning algorithms. In particular, we focus on three aspects of deep learning.
(1) Approximation: How accurately can we approximate the ground truth function with a function space parameterized by some neural network architecture?
(2) Generalization: How well can we expect the model trained on the training data to perform on the test data?
(3) Optimization: How closely can we approximate the optimal function inside the neural network function space?
Recent breakthroughs suggest that, it is necessary to understand how these components interplay with each other to truly understand how deep learning works. Hope we all could arrive at that level of understanding.

4. 강의선수/수강필수사항

Elementary probability and linear algebra.
Recommended: Real Analysis.

5. 성적평가

To be announced (will be modified based on co-teaching plans with Yonsei university).

Tentatively:
Homework: 80%
Final report: 20%

6. 강의교재

도서명 저자명 출판사 출판년도 ISBN

7. 참고문헌 및 자료

I would closely follow the notes of Matus Telgarsky: https://mjt.cs.illinois.edu/dlt/index.pdf
Recommended: "Understanding Machine Learning: From Theory to Algorithms" by Shalev-Shwartz and Ben-David.

8. 강의진도계획

To be announced.

9. 수업운영

Phase 1 (week 1~10): Lectures on basic materials.
Phase 2 (week 11~16): Lectures on recent papers, with student participations.

10. 학습법 소개 및 기타사항

11. 장애학생에 대한 학습지원 사항

- 수강 관련: 문자 통역(청각), 교과목 보조(발달), 노트필기(전 유형) 등

- 시험 관련: 시험시간 연장(필요시 전 유형), 시험지 확대 복사(시각) 등

- 기타 추가 요청사항 발생 시 장애학생지원센터(279-2434)로 요청