2025년도 2학기 계량경제학 (CMEF401-01) 강의계획서

1. 수업정보

학수번호 CMEF401 분반 01 학점 3.00
이수구분 교양선택 강좌유형 강의실 강좌 선수과목
포스테키안 핵심역량
강의시간 월, 수 / 15:30 ~ 16:45 / 무은재기념관 강의실 [301호] 성적취득 구분 G

2. 강의교수 정보

정진호 이름 정진호 학과(전공) 인문사회학부
이메일 주소 jjung@postech.ac.kr Homepage
연구실 전화
Office Hours 1:00-2:00 PM on Tuesdays and Thursdays, or by appointment

3. 강의목표

Course Description: This course covers the statistical tools needed to understand empirical economic research and to plan and execute independent research projects. Topics include statistical inference, regression, generalized least squares, instrumental variables, simultaneous equations models, and evaluation of government policies and programs.
Course Objectives/ Student Learning Outcomes: Upon completion of this course, students will:
1. Be able to explain the assumptions of the simple and multiple linear regression models,
2. Be able to understand and apply proper econometric models to answer economic questions,
3. Be able to test theories about the true model using formal hypothesis tests,
4. Learn how to communicate the results of econometric analysis in a clear way,
5. Learn how to use statistical software to apply all of these statistical techniques to analyze the relationship between real-world economic variables

4. 강의선수/수강필수사항

Microeconomics (CMEF 302) recommended, but not required.
- Understanding of Demand and Supply curve will be more than enough.

High-school level knowledge on Calculus, Linear Algebra, and probability

5. 성적평가

10 homework assignments 50%
2 Exams 40%
Attendance 10%

6. 강의교재

도서명 저자명 출판사 출판년도 ISBN
Introductory Econometrics: A Modern Approach Jeffery M. Wooldridge Cengage Learning 2019 978-1337558860

7. 참고문헌 및 자료

1. Introductory Econometrics: A Modern Approach. Jeffery M. Wooldridge. Cengage Learning
2. I will also provide more references when needed.

8. 강의진도계획

Topics to be Covered:
1. Fundamentals of Probability
2. Review of R Software to conduct econometric analysis
3. Simple Regression
4. Multiple Regression
5. Heteroskedasticity
6. Instrumental Variables
7. Simultaneous Equations Models
8. Time Series
9. Panel Data

9. 수업운영

Grading and Evaluation Procedures:
10 homework assignments 50%
2 Exams 40%
Attendance 10%

10. 학습법 소개 및 기타사항

Major Teaching Methods: Lecture and Hands-on Practices
Special Instructional Platforms/Materials: None
Notice: No deadline extensions on homework assignment will be given unless prior approval to reschedule has been given by the instructor.

11. 장애학생에 대한 학습지원 사항

- 수강 관련: 문자 통역(청각), 교과목 보조(발달), 노트필기(전 유형) 등

- 시험 관련: 시험시간 연장(필요시 전 유형), 시험지 확대 복사(시각) 등

- 기타 추가 요청사항 발생 시 장애학생지원센터(279-2434)로 요청