2026년도 1학기 보형형식론 (MATH606-01) 강의계획서

1. 수업정보

학수번호 MATH606 분반 01 학점 3.00
이수구분 전공선택 강좌유형 강의실 강좌 선수과목
포스테키안 핵심역량
강의시간 월, 수 / 12:30 ~ 13:45 / 수리과학관 [100호] 성적취득 구분 G

2. 강의교수 정보

Valentin Buciumas 이름 Valentin Buciumas 학과(전공) 수학과
이메일 주소 buciumas@postech.ac.kr Homepage
연구실 221 전화 054-279-2329
Office Hours oficially Wednesday 1pm-2pm, unofficially before/after class on Monday and Wednesday

3. 강의목표

https://en.wikipedia.org/wiki/Langlands_program
We will study the theory of automorphic forms using representation theory and number theory. I will explain some basic properties of automorphic forms/representations and we will study some examples. The hope is to understand some basic principles appearing in the area of math usually called the Langlands program.
We will introduce modular forms, with examples and explain how one can think about them as automorphic forms on SL_2. Then we will study general topics in automorphic forms including (a subset of)
-Tate's thesis
-Eisenstein series
-automorphic representations and real/p-adic representation theory
-Hecke theory and automorphic L-functions
-Langlands correspondence and Langlands functoriality, trace formula etc.
-L-functions and period integrals etc.

4. 강의선수/수강필수사항

At a very basic level you will need: undergraduate abstract algebra (Math 301-302) and undergraduate complex analysis or equivalent.
It will be very helpful if you took a course in number theory (say Math 304) and helpful if you took courses in representation theory (403 and/or 625).

5. 성적평가

중간고사 기말고사 출석 과제 프로젝트 발표/토론 실험/실습 퀴즈 기타
비고
homework + midterm/project/presentation (will be discussed in first class)

6. 강의교재

도서명 저자명 출판사 출판년도 ISBN

7. 참고문헌 및 자료

Bump: Automorphic Forms and Representations
Getz, Hahn: An Introduction to Automorphic Representations
Fleig, Gustafsson, Kleinschmidt, Persson: Eisenstein series and automorphic representations
Goldfeld: Automorphic representations and L-functions for the general linear group Vol1, Vol2
Gelbart: Automorphic Forms on Adele Groups
Langlands: On the Functional Equations Satisfied by Eisenstein Series

8. 강의진도계획

9. 수업운영

10. 학습법 소개 및 기타사항

TBA

11. 장애학생에 대한 학습지원 사항

- 수강 관련: 문자 통역(청각), 교과목 보조(발달), 노트필기(전 유형) 등

- 시험 관련: 시험시간 연장(필요시 전 유형), 시험지 확대 복사(시각) 등

- 기타 추가 요청사항 발생 시 장애학생지원센터(279-2434)로 요청