2. 강의교수 정보
|
이름 |
DmitryLogachev |
학과(전공) |
수학과 |
이메일 주소 |
nemir@postech.ac.kr
|
Homepage |
|
연구실 |
|
전화 |
|
Office Hours |
Thursday 16:00 - 17:00 (수리과학관 215호 (Math. Science Bldg. #215) 대면으로 합니다 (Face to Face))
|
3. 강의목표
This course explores a beautiful world of complex analysis. The journey starts from complex numbers and analytic functions. It covers contour integrals, Cauchy integral formula, residue theorem, power series, argument principle, conformal mappings, etc.
4. 강의선수/수강필수사항
Calculus I and II
5. 성적평가
Midterm Exam 30%
Final Exam 40% (Comprehensive)
Homework 30%
6. 강의교재
도서명 |
저자명 |
출판사 |
출판년도 |
ISBN |
Complex Variables and Applications (9th Edition)
|
James Brown and Ruel V. Churchill
|
McGraw-Hill
|
2014
|
|
7. 참고문헌 및 자료
Complex Analysis with Applications, by R. Silverman, Prantice-Hall, 1974.
8. 강의진도계획
01st week: Chapter 1 (sections 1-12): Complex numbers
02nd week: Chapter 2 (13-18): Mappings, Limits
03rd week: Chapter 2 (19-23): Cauchy-Riemann equations
04th week: Chapter 2 (24-29): Analytic functions, Harmonic functions, Reflection principle
05th week: Chapter 3 (30-40): Elementary functions
06th week: Chapter 4 (41-49): Contour integrals
07th week: Chapter 4 (50-59): Cauchy integral formula, Maximum modulus theorem
08th week: Midterm Exam(April. 10~14)
09th week: Chapter 5 (60-73): Series
10th week: Chapter 6 (74-84): Residues and poles
11th week: Chapter 7 (85-91): Improper integrals, Jordan's lemma
12th week: Chapter 7 (92-95): Definite integrals, Argument principle
13th week: Chapter 8 (96-102): Linear fractional transformations
14th week: Chapter 8 (103-109): Elementary mappings
15th week: Chapter 9 (112-114): Conformal mappings
16th week: Final Exam(June. 5~9)
Sections 29, 84, 95, 110-111 will be skipped.
9. 수업운영
Regular ( Face to Face) Course
11. 장애학생에 대한 학습지원 사항
- 수강 관련: 문자 통역(청각), 교과목 보조(발달), 노트필기(전 유형) 등
- 시험 관련: 시험시간 연장(필요시 전 유형), 시험지 확대 복사(시각) 등
- 기타 추가 요청사항 발생 시 장애학생지원센터(279-2434)로 요청