2023년도 2학기 실변수함수론II (MATH515-01) 강의계획서

1. 수업정보

학수번호 MATH515 분반 01 학점 3.00
이수구분 전공선택 강좌유형 강의실 강좌 선수과목
포스테키안 핵심역량
강의시간 화, 목 / 14:00 ~ 15:15 / 수리과학관 강의실 [104호] 성적취득 구분 G

2. 강의교수 정보

장진우 이름 장진우 학과(전공) 수학과
이메일 주소 jangjw@postech.ac.kr Homepage https://sites.google.com/view/jangjinw
연구실 수학과 321호 전화 054-279-2042
Office Hours 1pm-2pm on Fridays at Room 411 by our TA Jungmin Lee. Also by appointment.

3. 강의목표

This course is the second part of the graduate real analysis sequence. It builds upon the foundational topics covered in the first part, including abstract measure theory, Littlewood's three principles, convergence theorems, Lebesgue differentiation theorem, L^p spaces, interpolation theorems, and inequalities. In this course, we will focus on more advanced topics in real analysis, including functional analysis, its applications to PDEs, Distribution Theory, (and a hint of harmonic analysis via following Grafakos' "Classical Fourier Analysis" if time allows). By the end of this course, students should have a solid understanding of advanced real analysis techniques and be able to apply them to various mathematical problems.

4. 강의선수/수강필수사항

Real analysis I (Math 514)

5. 성적평가

Midterm Exam: 50%
Final Exam: 50%

6. 강의교재

도서명 저자명 출판사 출판년도 ISBN
Functional Analysis, Sobolev Spaces and Partial Differential Equations. Brezis, H. Springer. 2010
Real Analysis: Modern Techniques and Their Applications Folland, G. B. Wiley-Interscience. 1999

7. 참고문헌 및 자료

Grafakos, L. (2014). Classical Fourier Analysis. Springer.

8. 강의진도계획

We will cover the following topics.

1. The Hahn–Banach Theorems. Introduction to the Theory of Conjugate Convex Functions

2. The Uniform Boundedness Principle and the Closed Graph Theorem

3. Weak Topologies. Reflexive Spaces. Separable Spaces. Uniform Convexity

4. Distribution Theory

5. Sobolev Spaces

6. Compact Operators.

7. A Hint of Harmonic Analysis via following Grafakos' Classical Fourier Analysis if time allows.

9. 수업운영

Lecture

10. 학습법 소개 및 기타사항

TA: Jungmin Lee (Room 411)

11. 장애학생에 대한 학습지원 사항

- 수강 관련: 문자 통역(청각), 교과목 보조(발달), 노트필기(전 유형) 등

- 시험 관련: 시험시간 연장(필요시 전 유형), 시험지 확대 복사(시각) 등

- 기타 추가 요청사항 발생 시 장애학생지원센터(279-2434)로 요청