2023년도 2학기 계산선형대수와 응용 (MATH402-01) 강의계획서

1. 수업정보

학수번호 MATH402 분반 01 학점 3.00
이수구분 전공선택 강좌유형 강의실 강좌 선수과목
포스테키안 핵심역량
강의시간 화, 목 / 15:30 ~ 16:45 / 수리과학관 강의실 [104호] 성적취득 구분 G

2. 강의교수 정보

최민석 이름 최민석 학과(전공) 수학과
이메일 주소 mchoi@postech.ac.kr Homepage
연구실 전화 054-279-2055
Office Hours Wednesday 3-4pm or by appointment

3. 강의목표

Linear algebra plays an important role in solving problems arising in a variety
of application domains including engineering, machine learning, data
science, and more. This course is a continuation of MAT203 (Applied Linear
Algebra) with focuses on computational linear algebra and its applications to
real-world problems. It provides analysis of the problems along with algorithms
and also uses python or Matlab as tool for implementing algorithms. It provides
an instruction for programming in python (or Matlab) in the context of scientific
computing.

Topics include basic linear algebra, stability and accuracy of numerical algorithms,
various matrix factorizations (QR, SVD, LU, etc.), principal component analysis,
iterative methods for linear systems, computation of eigenvalues and eigenvectors,
randomized linear algebra, and its applications to various fields such as
Google's PageRank algorithm, machine learning, data mining, computer vision.

4. 강의선수/수강필수사항

Knowledge of undergraduate linear algebra and calculus. Python will
be used as the primary language and you will be expected to master it at the end
of the semester.

5. 성적평가

30% homework
35% midterm
35% final exam

6. 강의교재

도서명 저자명 출판사 출판년도 ISBN
Numerical linear algebra Trefethen, Lloyd, and Bau, David 0000

7. 참고문헌 및 자료

8. 강의진도계획

Basics: Introduction, motivation, overview, review of programming language (python); conditioning, stability and accuracy of numerical algorithms

Review of linear algebra: multiplication, matrix-matrix multiplication, fundamental subspaces, orthogonal matrices

Eigendecompositions: computing eigenvalues and eigenvectors; power method and inverse iteration

Orthogonal vectors and matrices; QR decomposition and its computation

Singular value decomposition (SVD) and Principal component analysis (PCA):
reduction; low rank approximation; computing SVD

Solving linear equations and least squares; iterative methods; Arnoldi and Krylov iteration;

Randomized linear algebra: matrix-matrix multiplication and randomized Kaczmarz iteration

Applications: Google's PageRank; Low rank and compressed sensing; Classification of handwritten digits; Deep learning

9. 수업운영

No late homework will be accepted without an approved excuse.

10. 학습법 소개 및 기타사항

11. 장애학생에 대한 학습지원 사항

- 수강 관련: 문자 통역(청각), 교과목 보조(발달), 노트필기(전 유형) 등

- 시험 관련: 시험시간 연장(필요시 전 유형), 시험지 확대 복사(시각) 등

- 기타 추가 요청사항 발생 시 장애학생지원센터(279-2434)로 요청