3. 강의목표
This course is the first part of a graduate real analysis sequence. It provides a rigorous introduction to measure theory, integration, and functional analysis. Topics covered include abstract theory of measure and integration, convergence theorems, Lebesgue differentiation theorem, L^p spaces, and some elements of functional analysis.
4. 강의선수/수강필수사항
Math 311, 312
5. 성적평가
Homework: 30%, Midterm: 30%, Final : 40%
6. 강의교재
도서명 |
저자명 |
출판사 |
출판년도 |
ISBN |
The Elements of Integration and Lebesgue Measure
|
Robert G. Bartle
|
John Wiley & Sons, Inc.
|
1995
|
9780471042228
|
Real Analysis: Modern Techniques and Their Applications
|
Gerald B. Folland
|
Wiley
|
2007
|
978-0471317166
|
Real Analysis, Measure Theory, Integration, & Hilbert Spaces
|
Elias M. Stein & Rami Shakarchi
|
Princeton University Press
|
2005
|
978-0-691-11386-9
|
Real Analysis for Graduate Students
|
Richard F. Bass
|
|
0000
|
|
7. 참고문헌 및 자료
Universal approximation theorem by G. Cybenko
https://link.springer.com/article/10.1007/BF02551274
8. 강의진도계획
1. Measure
2. Integration
3. Signed measures and Differentiation
4. Elements of Functional analysis
5. L^p spaces
9. 수업운영
Mostly in-person lectures but some online (streaming) or video lectures in few weeks.
10. 학습법 소개 및 기타사항
TA: Sungbin Park
11. 장애학생에 대한 학습지원 사항
- 수강 관련: 문자 통역(청각), 교과목 보조(발달), 노트필기(전 유형) 등
- 시험 관련: 시험시간 연장(필요시 전 유형), 시험지 확대 복사(시각) 등
- 기타 추가 요청사항 발생 시 장애학생지원센터(279-2434)로 요청